7,169 research outputs found

    Unnecessary Indeterminacy: Process Patent Protection After Kinik v. ITC

    Get PDF
    In Kinik v. International Trade Commission, the U.S. Court of Appeals for the Federal Circuit suggested in dicta that the defenses available to foreign manufacturers in infringement actions under 35 U.S.C. § 271(g) in Federal district courts do not apply to exclusion actions before the International Trade Commission. This iBrief argues that this decision is problematic for three reasons: (1) the Federal Circuit’s decision is inconsistent with the ITC’s longstanding tradition of consulting the patent statute when adjudicating exclusion actions under 19 U.S.C. § 1337, (2) the court’s suggestion that the ITC should be given broad discretion to resolve conflicts between the patent statute and the Tariff Act is at odds with the Chevron doctrine, and (3) if the ITC employs the broad discretion that Kinik confers to it by excluding more foreign art than Federal district courts could lawfully exclude under the patent statute, the enforcement of domestic patent policy in the United States could conceivably violate obligations of non-discrimination (Article 27.1) and burden-shifting (Article 34) imposed by the TRIPS Agreement

    Effects of different closures for thickness diffusivity

    Get PDF
    The effects of spatial variations of the thickness diffusivity (K) appropriate to the parameterisation of [Gent, P.R. and McWilliams, J.C., 1990. Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150–155.] are assessed in a coarse resolution global ocean general circulation model. Simulations using three closures yielding different lateral and/or vertical variations in K are compared with a simulation using a constant value. Although the effects of changing K are in general small and all simulations remain biased compared to observations, we find systematic local sensitivities of the simulated circulation on K. In particular, increasing K near the surface in the tropical ocean lifts the depth of the equatorial thermocline, the strength of the Antarctic Circumpolar Current decreases while the subpolar and subtropical gyre transports in the North Atlantic increase by increasing K locally. We also find that the lateral and vertical structure of K given by a recently proposed closure reduces the negative temperature biases in the western North Atlantic by adjusting the pathways of the Gulf Stream and the North Atlantic Current to a more realistic position

    Superconformal Ward Identities and their Solution

    Full text link
    Superconformal Ward identities are derived for the the four point functions of chiral primary BPS operators for N=2,4\N=2,4 superconformal symmetry in four dimensions. Manipulations of arbitrary tensorial fields are simplified by introducing a null vector so that the four point functions depend on two internal RR-symmetry invariants as well as two conformal invariants. The solutions of these identities are interpreted in terms of the operator product expansion and are shown to accommodate long supermultiplets with free scale dimensions and also short and semi-short multiplets with protected dimensions. The decomposition into RR-symmetry representations is achieved by an expansion in terms of two variable harmonic polynomials which can be expressed also in terms of Legendre polynomials. Crossing symmetry conditions on the four point functions are also discussed.Comment: 73 pages, plain Tex, uses harvmac, version 2, extra reference

    Nuclear G-Matrix Elements from Nonlocal Potentials

    Get PDF
    We study effects of nonlocality in the nuclear force on the G-matrix elements for finite nuclei. Nuclear G-matrix elements for \O16 are calculated in the harmonic oscillator basis from a nonlocal potential which models quark exchange effects between two nucleons. We employ a simple form of potential that gives the same phase shifts as a realistic local nucleon potential. The G-matrix elements calculated from the nonlocal potential show moderate increase in repulsion from those derived from the local potential.Comment: 11 page, LaTeX, 2 PS figures, uses epsf.st

    Nonlinear field theories during homogeneous spatial dilation

    Full text link
    The effect of a uniform dilation of space on stochastically driven nonlinear field theories is examined. This theoretical question serves as a model problem for examining the properties of nonlinear field theories embedded in expanding Euclidean Friedmann-Lema\^{\i}tre-Robertson-Walker metrics in the context of cosmology, as well as different systems in the disciplines of statistical mechanics and condensed matter physics. Field theories are characterized by the speed at which they propagate correlations within themselves. We show that for linear field theories correlations stop propagating if and only if the speed at which the space dilates is higher than the speed at which correlations propagate. The situation is in general different for nonlinear field theories. In this case correlations might stop propagating even if the velocity at which space dilates is lower than the velocity at which correlations propagate. In particular, these results imply that it is not possible to characterize the dynamics of a nonlinear field theory during homogeneous spatial dilation {\it a priori}. We illustrate our findings with the nonlinear Kardar-Parisi-Zhang equation

    New Recursion Relations and a Flat Space Limit for AdS/CFT Correlators

    Full text link
    We consider correlation functions of the stress-tensor or a conserved current in AdS_{d+1}/CFT_d computed using the Hilbert or the Yang-Mills action in the bulk. We introduce new recursion relations to compute these correlators at tree level. These relations have an advantage over the BCFW-like relations described in arXiv:1102.4724 and arXiv:1011.0780 because they can be used in all dimensions including d=3. We also introduce a new method of extracting flat-space S-matrix elements from AdS/CFT correlators in momentum space. We show that the (d+1)-dimensional flat-space amplitude of gravitons or gluons can be obtained as the coefficient of a particular singularity of the d-dimensional correlator of the stress-tensor or a conserved current; this technique is valid even at loop-level in the bulk. Finally, we show that our recursion relations automatically generate correlators that are consistent with this observation: they have the expected singularity and the flat-space gluon or graviton amplitude appears as its coefficient.Comment: 22+6 pages (v2) typos fixe
    • …
    corecore